Frame expansions with erasures: an approach through the non-commutative operator theory
نویسنده
چکیده
In modern communication systems such as the Internet, random losses of information can be mitigated by oversampling the source. This is equivalent to expanding the source using overcomplete systems of vectors (frames), as opposed to the traditional basis expansions. Dependencies among the coefficients in frame expansions often allow for better performance comparing to bases under random losses of coefficients. We show that for any n-dimensional frame, any source can be linearly reconstructed from only ∼ n logn randomly chosen frame coefficients, with a small error and with high probability. Thus every frame expansion withstands random losses better (for worst case sources) than the orthogonal basis expansion, for which the n logn bound is attained. The proof reduces to M.Rudelson’s selection theorem on random vectors in the isotropic position, which is based on the non-commutative Khinchine’s inequality.
منابع مشابه
D-branes and Deformation Quantization
In this note we explain how world-volume geometries of D-branes can be reconstructed within the microscopic framework where D-branes are described through boundary conformal field theory. We extract the (non-commutative) world-volume algebras from the operator product expansions of open string vertex operators. For branes in a flat background with constant non-vanishing B-field, the operator pr...
متن کاملDuals of Some Constructed $*$-Frames by Equivalent $*$-Frames
Hilbert frames theory have been extended to frames in Hilbert $C^*$-modules. The paper introduces equivalent $*$-frames and presents ordinary duals of a constructed $*$-frame by an adjointable and invertible operator. Also, some necessary and sufficient conditions are studied such that $*$-frames and ordinary duals or operator duals of another $*$-frames are equivalent under these conditions. W...
متن کاملFrames and Homogeneous Spaces
Let be a locally compact non?abelian group and be a compact subgroup of also let be a ?invariant measure on the homogeneous space . In this article, we extend the linear operator as a bounded surjective linear operator for all ?spaces with . As an application of this extension, we show that each frame for determines a frame for and each frame for arises from a frame in via...
متن کاملQuantized Oversampled Filter Banks with Erasures
Oversampled filter banks can be used to enhance resilience to erasures in communication systems in much the same way that finite-dimensional frames have previously been applied. This paper extends previous finite dimensional treatments to frames and signals in l2(Z) with frame expansions that can be implemented efficiently with filter banks. It is shown that tight frames attain best performance...
متن کاملEmbedding of a 2D Graphene System in Non-Commutative Space
The BFT approach is used to formulate the electronic states in graphene through a non-commutative space in the presence of a constant magnetic field B for the first time. In this regard, we introduce a second class of constrained system, which is not gauge symmetric but by applying BFT method and extending phase space, the second class constraints converts to the first class constraints so th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005